Skip to content Skip to navigation

CRISPR Base Editing in Induced Pluripotent Stem Cells.

TitleCRISPR Base Editing in Induced Pluripotent Stem Cells.
Publication TypeJournal Article
Year of Publication2019
AuthorsChang, Ya-Ju, Xu Christine L., Cui Xuan, Bassuk Alexander G., Mahajan Vinit B., Tsai Yi-Ting, and Tsang Stephen H.
JournalMethods Mol Biol
Date Published2019 Jun 28
ISSN1940-6029
Abstract

Induced pluripotent stem cells (iPSCs) have demonstrated tremendous potential in numerous disease modeling and regenerative medicine-based therapies. The development of innovative gene transduction and editing technologies has further augmented the potential of iPSCs. Cas9-cytidine deaminases, for example, have developed as an alternative strategy to integrate single-base mutations (C → T or G → A transitions) at specific genomic loci. In this chapter, we specifically describe CRISPR (clustered regularly interspaced short palindromic repeats) base editing in iPSCs for editing precise locations in the genome. This state-of-the-art approach enables highly efficient and accurate modifications in genes. Thus, this technique not only has the potential to have biotechnology and therapeutic applications but also the ability to reveal underlying mechanisms regarding pathologies caused by specific mutations.

DOI10.1007/7651_2019_243
Alternate JournalMethods Mol. Biol.
PubMed ID31250381