Skip to content Skip to navigation

Genomics Lab

We are using next-generation DNA-sequencing technologies to analyze whole genomes, in addition to the more traditional whole exome approach, in order to identify the underlying genetic cause to disease. The information gained from these high throughput techniques allows us to better diagnose patients as well as more accurately develop animal models.

In population genetic studies, we also genomics technologies to identify risk factors for eye diseases. We are mapping genes for uveitis, macular dystrophies, and retinal degenerations. Other projects include understanding gene expression patterns during retinal development, corneal inflammation, squamous cell carcinoma, and in specialized eye tissues such as the retinal pigment epithelium and ciliary body.

Projects

Predicting the effects of disease mutations using structural bioinformatics.

News

Jul 12 2018 | Posted In: 20/20 Blog
Palo Alto, CA — Dr. Vinit Mahajan and Dr.
Jun 28 2018 | Posted In: 20/20 Blog
Cold Spring Harbor, NY —Marcus Toral, an M.D., Ph.D.
Mar 16 2018 | Posted In: 20/20 Blog
Novel CAPN5 mutation associated with inflammatory vitreoretinopathy, hearing loss, and developmental delay.
Feb 26 2017 | Posted In: 20/20 Blog, Press
New vision-affecting gene mutation discovered in the gene SLC38A8.
Apr 22 2016 | Posted In: 20/20 Blog
A new pre-clinical mouse model to study blindness caused by diabetes.

Publications

Translation of CRISPR Genome Surgery to the Bedside for Retinal Diseases., Xu, Christine L., Cho Galaxy Y., Sengillo Jesse D., Park Karen S., Mahajan Vinit B., and Tsang Stephen H. , Front Cell Dev Biol, 2018, Volume 6, p.46, (2018)
Structural modeling of a novel SLC38A8 mutation that causes foveal hypoplasia, Toral, Marcus A., Velez Gabriel, Boudreault Katherine, Schaefer Kellie A., Xu Yu, Saffra Norman, Bassuk Alexander G., Tsang Stephen H., and Mahajan Vinit B. , Molecular genetics & genomic medicine, Volume 5, p.202–209, (2017)
Calpain-5 gene expression in the mouse eye and brain, Schaefer, Kellie, Mahajan Maryann, Gore Anuradha, Tsang Stephen H., Bassuk Alexander G., and Mahajan Vinit B. , BMC research notes, Volume 10, Number 1, p.602, (2017)
BESTROPHIN1 mutations cause defective chloride conductance in patient stem cell-derived RPE., Moshfegh, Yasmin, Velez Gabriel, Li Yao, Bassuk Alexander G., Mahajan Vinit B., and Tsang Stephen H. , Hum Mol Genet, 2016 07 01, Volume 25, Issue 13, p.2672-2680, (2016)
Catenin delta-1 (CTNND1) phosphorylation controls the mesenchymal to epithelial transition in astrocytic tumors, Yang, Jin, Bassuk Alexander G., Merl-Pham Juliane, Hsu Chun-Wei, Colgan Diana F., Li Xiaorong, Au Kit Sing, Zhang Lijuan, Smemo Scott, Justus Sally, et al. , Human molecular genetics, Volume 25, Number 19, p.4201–4210, (2016)
Structural modeling of a novel CAPN5 mutation that causes uveitis and neovascular retinal detachment., Bassuk, Alexander G., Yeh Steven, Wu Shu, Martin Daniel F., Tsang Stephen H., Gakhar Lokesh, and Mahajan Vinit B. , PLoS One, 2015, Volume 10, Issue 4, p.e0122352, (2015)